Power Flow Regulation of a Multi Area System with Fuzzy Gain Scheduled PI (FGPI) Controller for Static Synchronous Series Compensator (SSSC) with Superconducting Magnetic Energy Storage System (SMES)

نویسندگان

  • S. Padma
  • R. Lakshmipathi
چکیده

In this study, a fuzzy gain scheduled proportional and integral (FGPI) controller was developed to regulate the power flow regulation of Static Synchronous Series Compensator (SSSC) in a multi-area power system. Also, this FGPI was developed for the SSSC without and with Superconducting Magnetic Energy Storage (SMES) system. Two performance criteria were utulized for the comparison. First, settling times and overshoots of the real and reactive power flow were compared. Later, the THD of the Voltage Source Inverter (VSI) output voltage were compared. All the models were simulated by Matlab 7.0-Simulink software. The simulation results show that the FGPI controller developed in this study performs better for the SSSC system with SMES than the other without SMES. General Terms Fuzzy Logic Control, multi-level inverters, PI control, FACTS devices

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Various Controllers for Static Synchronous Series Compensator Integrated with Superconducting Magnetic Energy Storage System

A transient stability analysis is done for a multi-area power system with Static Synchronous Series Compensator (SSSC) integrated with Superconducting Magnetic Energy Storage (SMES) system. The SSSC is realized with Voltage Source Inverters (VSI) and the SMES is realized as a coil. The real and reactive power reference values are set constant and a three phase fault is created in one of the tra...

متن کامل

Enhancement Of Voltage Stability And Power Oscillation Damping Using Static Synchronous Series Compensator With Smes

The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the power system. The main purpose of this paper proposes a 12-pulse based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) for enhancing the voltage stability and power oscillation damping in multi area system. Control sche...

متن کامل

Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control

Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...

متن کامل

Power Swings Damping Improvement with STATCOM and SMES Based on the Direct Lyapunov Method

In this paper a comprehensive approach is presented to improve power swings damping based on direct Lyapunov method. The approach combines superconducting magnetic energy storage (SMES) system with static synchronous compensator (STATCOM). Considering the energy absorption/injection ability of SMES, in transient states the combination exchanges both active and reactive powers with power system....

متن کامل

Dynamic Stabilization of Wind Farms Deploying Static Synchronous Series Compensator

Encountering series-compensated transmission lines, sub-synchronous resonance (SSR) may strike the power system by jeopardizing its stability and mechanical facilities. This paper aims to verify the capability of static synchronous series compensator (SSSC) in mitigating the mechanical and electrical oscillations such as SSR in wind farm integrations. A wind turbine with a self–excited inductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010